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Abstract

Neurofeedback may enhance compensatory brain mechanisms. EEG-based sen-

sorimotor rhythm neurofeedback training was suggested to be beneficial in

Parkinson’s disease. In a placebo-controlled study in parkinsonian nonhuman

primates we here show that sensorimotor rhythm neurofeedback training

reduces MPTP-induced parkinsonian symptoms and both ON and OFF scores

during classical L-DOPA treatment. Our findings encourage further develop-

ment of sensorimotor rhythm neurofeedback training as adjunct therapy for

Parkinson’s disease which might help reduce L-DOPA-induced side effects.

Introduction

L-DOPA treatment for Parkinson’s disease (PD) may

have significant long-term side effects.1 Real-time elec-

troencephalography (EEG)-based neurofeedback, as a vol-

untary operant conditional training for self-regulation of

brain function, was applied to treat epilepsy,2 anxiety,3

substance abuse,4 and attention deficit/hyperactivity disor-

der (ADHD).5 Sensorimotor rhythm (SMR) neurofeed-

back training can reduce susceptibility to epilepsy in

cats.6 SMR, an oscillatory thalamocortical rhythm of syn-

chronized brain activity of 12–17 Hz above the sensori-

motor cortex, is suppressed during contralateral motor

performance or motor imagery.7 Trained modulation of

premovement SMR affects motor performance in healthy

humans.8 In a case study in a PD patient SMR neurofeed-

back combined with respiration-based biofeedback

reduced L-DOPA dose and improved PD symptoms.9,10

As the MPTP marmoset monkey is a well-validated model

for PD,11–13 and marmoset monkeys are able to voluntar-

ily control SMR by neurofeedback training,11 we here

study the impact of SMR neurofeedback training on

MPTP-induced parkinsonian symptoms and on OFF and

ON scores during classical L-DOPA treatment in a pla-

cebo-controlled study in MPTP marmoset monkeys.

Material and Methods

Animals

We included 10 healthy adult (age 2–4) common mar-

moset monkeys (Callithrix jacchus) of both sexes (5F/5M)

(325–425 g) from BPRC’s colony. Monkeys were experi-

mentally na€ıve, pair-housed in spacious cages, under

intensive veterinary care and controlled conditions com-

pliant with European Community guidelines,11 daily fed

with standard monkey-chow (Special Duit Services,

Witham, Essex, UK), fruits, vegetables and ad libitum
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water supply, equally divided over both groups concern-

ing age, gender and facility room. The Institute’s Ethics

Committee approved study protocol and experimental

procedure.

Experimental design

Monkeys were freely moving, implanted with two epidu-

ral sensorimotor cortex bioelectric bipolar electrodes for

real time telemetric EEG registration and subcutaneous

bioelectric chest electrodes for electrocardiogram (ECG)

recording.11 Three weeks after EEG surgery half the mon-

keys (n = 5, 3F/2M) had 1–2 SMR neurofeedback train-

ings per week to positively reinforce SMR EEG spindles

by food rewards. Training sessions were finished after 35

rewards or after 30 min. EEG power spectra were calcu-

lated online from 1.28 sec EEG epochs.11 Detection of

characteristic 12–17 Hz SMR spindles (spectral EEG

power below 11 V2 Hz at 9 and 20 Hz and beyond

23 V2 Hz for 11–18 Hz) triggered a positively reinforcing

release of a marshmallow-like reward.11 Once rewards

were quickly achieved, training rate was reduced to 1/

week till end of study. Control monkeys (n = 5, 2F/3M)

were exposed to same training sessions receiving same

amounts of rewards but not related to brain activity.

After 9–12 training sessions PD was induced in all mon-

keys by five daily 1-methyl-4-phenyl-1,2,3,6-tetrahydro-

pyridine (MPTP, Sigma Aldrich, USA) subcutaneous

injections (total dose: 8 mg/kg). After disease stabiliza-

tion, all monkeys were treated with L-DOPA (Madopar,

12.5 mg/kg p.o. BID for 3 weeks, Arabic Gum powder,

Fagron Ltd, UK).14 Finally, anesthetized monkeys were

euthanized for pathological examination.

Behavioral observations and measurements

Blinded ratings of parkinsonian signs (immobility, muscle

rigidity, rest tremor, apathy, inadequate grooming),

between 0 (normal/healthy) and 4 (severely affected),

were performed in the monkeys’ home cages every morn-

ing, i.e. 15 h post L-DOPA dose during treatment phase

(OFF scores), and during the last 10 days also 2 h post

dose (ON scores).15 Body weight was measured every

week and every time before drug administration and

expressed relative to individual baseline (i.e. average of 4

subsequent pre-study days). Before noon monkeys’ emo-

tional mood was assessed with the Human Threat Test

(HTT)16 before (baseline), three times during the training

phase and five times during L-DOPA treatment. Baseline

was set to 100%. For HTT, during a two-minute period

monkeys’ postures and jumps were scored as fear related

or relaxed and expressed as ratio between number of

relaxed postures and jumps relative to total number.16 All

observations were made by two cross-validated blinded

technicians.

Pathology

Dopamine positive neurons of the Substantia nigra pars

compacta (SNpc) were counted with tyrosine hydroxylase

immune reactive (TH-IR) staining by a blinded techni-

cian.15,16

Statistics

Animal group size N was based on statistical power calcu-

lation with simple between group t-tests: N = 2(Za/
2 + Zb)2 * (SD/ES)2 with a=0.05, Za/2 = 1.96, b=0.2
(80% power), Zb=0.84. Parkinsonian score as primary

outcome measure, SD=8 (based on previous experiments),

effect size 16 yielded N = 4 (assuming normal distribu-

tion) and N = 5 (adjusted to student t distribution).

For HTT, body weight, ON scores (also compared with

OFF scores) and pathology a between-group comparison

was performed with independent t -tests with Welch’s

correction. Variance between groups was similar for body

weight (F = 1.944, DFn = 13, Dfd = 13, P = 0.2439),

HTT (F = 2.120, DFn = 8, Dfd = 8, P = 0.3083), L-

DOPA effect (F = 2.236, DFn = 9, Dfd = 9, P = 0.2465)

and pathology (F = 2.114, DFn = 4, Dfd = 4,

P = 0.2439). OFF scores were analyzed with linear mixed-

effects model fit by residual maximum likelihood estima-

tions (REMLs). Performance improvement in each session

was expressed as increase in the slope of the curve.

P < 0.05 was considered significant.

Results

EEG Effects

Figure 1 shows raw sensorimotor cortex EEG signals

without (Fig 1A) and during SMR neurofeedback training

(Fig 1B). Food rewards were triggered by EEG epochs

with characteristic SMR spindles. Representative power

spectra during SMR neurofeedback training showed pro-

nounced SMR peaks, whereas controls showed random

EEG spectra (Fig 2). In one control monkey electrode

failure impeded EEG recordings, but it completed the

control training protocol.

Symptoms’ progression and adjunct
treatment

Blinded ratings showed less severe parkinsonian symp-

toms in neurofeedback-trained monkeys compared to

controls during PD induction (Fig 3A) and reduced
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scores during the stabilization phase compared to con-

trols. During identical L-DOPA treatment, both ON and

OFF scores were significantly reduced in neurofeedback-

trained monkeys compared to controls, respectively

(Fig 3A). Note, even OFF scores in neurofeedback-trained

monkeys were significantly smaller than ON scores in

controls (Fig 3A).

Secondary parameters

The MPTP-induced decline in body weight was smaller in

neurofeedback-trained monkeys (Fig 3B). HTT revealed a

mood increase owing to the monkeys’ handling before

PD induction in both groups (Fig 3C). During L-DOPA

treatment control monkeys’ mood fell below baseline,

whereas neurofeedback-trained monkeys improved. Heart

rate varied between 240-300 beats/min and 220–250
beats/min in control and in neurofeedback-trained mon-

keys, respectively.

Pathology

Both groups had a > 50% cell loss of TH-IR positive

SNpc neurons compared to healthy controls (P < 0.01),

without difference between neurofeedback (n = 5) and

control group (n = 5) (40.75 � 4.76% vs. 34.56 � 6.93%

cell survival, t -test with Welch’s correction, t = 0.7361,

df = 7.092, P = 0.4853).

Discussion

We showed that SMR neurofeedback reduces MPTP-

induced parkinsonian symptoms and body weight loss in

monkeys compared to control monkeys. Both groups had

no difference in TH-positive SNpc neurons, ruling out

neuroprotective effects. SMR neurofeedback training

might enhance compensatory mechanisms, comparable

with presymptomatic PD compensation17,18 or paradoxi-

cal movement.19 We found that during L-DOPA treat-

ment, ON and OFF scores were significantly smaller in

SMR neurofeedback-trained monkeys compared to con-

trols, respectively. Intriguingly, OFF scores in SMR mon-

keys were even significantly smaller compared to ON

scores in controls. Future studies should address the

impact of the selected frequency band (here 12–17 Hz) to

demonstrate SMR specificity and help elucidate the role

of controversially discussed basal ganglia-thalamocortical

rhythms.20–24 We showed that SMR neurofeedback

Figure 1. EEG (blue curves) with power spectra underneath (blue, from 1.28-s epochs separated by green lines, axes equally scaled, numbers

indicating peak frequency) and ECG (red curves) during (A) control (two traces) and (B) SMR neurofeedback training (three traces). Yellow bars

indicate epochs with SMR spindles. No power spectrum calculation for noisy epochs (horizontal blue lines in second and third trace).
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Figure 2. Time-varying power spectra of 30-min EEG recordings in monkeys with (A) control (n = 4) and (B) SMR neurofeedback training (n = 5)

normalized by highest individual peak for each monkey. Only neurofeedback-trained monkeys had pronounced 12–17 Hz SMR peaks.
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reduced monkeys’ heart rate close to anesthesia levels

(206–245 beats/min)25 and improved HTT mood scores,16

in accordance with findings in normal humans.10

In conclusion, SMR neurofeedback is a promising

adjunct approach for further development as treatment

for PD motor symptoms to lower the L-DOPA-induced

side effects.
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